Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 12(12)2023 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-37371120

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) and the Epstein-Barr virus (EBV) are double-stranded DNA oncogenic gammaherpesviruses. These two viruses are associated with multiple human malignancies, including both B and T cell lymphomas, as well as epithelial- and endothelial-derived cancers. KSHV and EBV establish a life-long latent infection in the human host with intermittent periods of lytic replication. Infection with these viruses induce the expression of both viral and host RNA transcripts and activates several RNA sensors including RIG-I-like receptors (RLRs), Toll-like receptors (TLRs), protein kinase R (PKR) and adenosine deaminases acting on RNA (ADAR1). Activation of these RNA sensors induces the innate immune response to antagonize the virus. To counteract this, KSHV and EBV utilize both viral and cellular proteins to block the innate immune pathways and facilitate their own infection. In this review, we summarize how gammaherpesviral infections activate RNA sensors and induce their downstream signaling cascade, as well as how these viruses evade the antiviral signaling pathways to successfully establish latent infection and undergo lytic reactivation.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 8 , Infección Latente , Humanos , ARN , Herpesvirus Humano 4/fisiología , Inmunidad Innata
2.
J Virol ; 97(3): e0176322, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36995092

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi sarcoma (KS), the plasmablastic form of multicentric Castleman's disease, and primary effusion lymphoma. In sub-Saharan Africa, KS is the most common HIV-related malignancy and one of the most common childhood cancers. Immunosuppressed patients, including HIV-infected patients, are more prone to KSHV-associated disease. KSHV encodes a viral protein kinase (vPK) that is expressed from ORF36. KSHV vPK contributes to the optimal production of infectious viral progeny and upregulation of protein synthesis. To elucidate the interactions of vPK with cellular proteins in KSHV-infected cells, we used a bottom-up proteomics approach and identified host protein ubiquitin-specific peptidase 9X-linked (USP9X) as a potential interactor of vPK. Subsequently, we validated this interaction using a co-immunoprecipitation assay. We report that both the ubiquitin-like and the catalytic domains of USP9X are important for association with vPK. To uncover the biological relevance of the USP9X/vPK interaction, we investigated whether the knockdown of USP9X would modulate viral reactivation. Our data suggest that depletion of USP9X inhibits both viral reactivation and the production of infectious virions. Understanding how USP9X influences the reactivation of KSHV will provide insights into how cellular deubiquitinases regulate viral kinase activity and how viruses co-opt cellular deubiquitinases to propagate infection. Hence, characterizing the roles of USP9X and vPK during KSHV infection constitutes a first step toward identifying a potentially critical interaction that could be targeted by future therapeutics. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi sarcoma (KS), the plasmablastic form of multicentric Castleman's disease, and primary effusion lymphoma. In sub-Saharan Africa, KS is the most common HIV-related malignancy. KSHV encodes a viral protein kinase (vPK) that aids viral replication. To elucidate the interactions of vPK with cellular proteins in KSHV-infected cells, we used an affinity purification approach and identified host protein ubiquitin-specific peptidase 9X-linked (USP9X) as a potential interactor of vPK. Depletion of USP9X inhibits both viral reactivation and the production of infectious virions. Overall, our data suggest a proviral role for USP9X.


Asunto(s)
Herpesvirus Humano 8 , Sarcoma de Kaposi , Ubiquitina Tiolesterasa , Niño , Humanos , Enzimas Desubicuitinizantes , Herpesvirus Humano 8/fisiología , Infecciones por VIH/complicaciones , Linfoma de Efusión Primaria , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/patología , Sarcoma de Kaposi/virología , Ubiquitina Tiolesterasa/genética , Proteínas Virales/genética
3.
J Virol ; 94(14)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32376624

RESUMEN

Little is known about the human cytomegalovirus (HCMV) tegument protein UL88. Large-scale genomic studies have reported disparate results for UL88-null viruses, reporting both no phenotype and a >1-log decrease in virus titers. UL88 has also been reported to interact with UL69 and UL48, but the functional relevance of this interaction is unknown. Here, we report that UL88, which is conserved among different viral strains, is dispensable for production of infectious HCMV virions in multiple HCMV strains and cell types. However, the specific infectivity of HCMV virions suffers in the absence of UL88, as more genomes are required per PFU. This may be a result of altered virion tegument protein composition, as Western blot analysis shows a significant reduction in the tegument levels of pp71, UL47, and UL48 in viruses lacking UL88. While an interaction between UL88 and UL48 has previously been reported, we show that UL88 can interact with UL47; however, UL88 does not appear to be part of a stable complex consisting of UL47 and UL48. These findings identify an important role for UL88 in incorporating the viral proteins UL47 and UL48 into the virion tegument layer.IMPORTANCE A better understanding of the role and functions of tegument proteins in HCMV, many of which remain uncharacterized, will contribute to our understanding of the biology of HCMV. The virus has a large genome, greater than 230 kb, and functional annotation of these genes is important for identifying novel targets for improving therapeutic intervention. This study identifies a role for a viral tegument protein with unknown function, UL88, in maintaining the proper tegument composition of HCMV virions. Virions produced in the absence of UL88 exhibit decreased fitness and require more genomes per infectious unit.


Asunto(s)
Citomegalovirus/metabolismo , Genoma Viral , Proteínas Virales/metabolismo , Virión/metabolismo , Citomegalovirus/genética , Humanos , Células THP-1 , Proteínas Virales/genética , Virión/genética
4.
J Virol ; 94(7)2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-31915281

RESUMEN

Human cytomegalovirus (HCMV) is a ubiquitous pathogen that encodes many proteins to modulate the host immune response. Extensive efforts have led to the elucidation of multiple strategies employed by HCMV to effectively block NK cell targeting of virus-infected cells and the major histocompatibility complex (MHC) class I-primed CD8+ T cell response. However, viral regulation of the MHC class II-mediated CD4+ T cell response is understudied in endogenous MHC class II-expressing cells, largely because the popular cell culture systems utilized for studying HCMV do not endogenously express MHC class II. Of the many cell types infected by HCMV in the host, myeloid cells, such as monocytes, are of particular importance due to their role in latency and subsequent dissemination throughout the host. We investigated the impact of HCMV infection on MHC class II in Kasumi-3 cells, a myeloid-progenitor cell line that endogenously expresses the MHC class II gene, HLA-DR. We observed a significant reduction in the expression of surface and total HLA-DR at 72 h postinfection (hpi) and 120 hpi in infected cells. The decrease in HLA-DR expression was independent of the expression of previously described viral genes that regulate the MHC class II complex or the unique short (US) region of HCMV, a region expressing many immunomodulatory genes. The altered surface level of HLA-DR was not a result of increased endocytosis and degradation but was a result of a reduction in HLA-DR transcripts due to a decrease in the expression of the class II transactivator (CIITA).IMPORTANCE Human cytomegalovirus (HCMV) is an opportunistic herpesvirus that is asymptomatic for healthy individuals but that can lead to severe pathology in patients with congenital infections and immunosuppressed patients. Thus, it is important to understand the modulation of the immune response by HCMV, which is understudied in the context of endogenous MHC class II regulation. Using Kasumi-3 cells as a myeloid progenitor cell model endogenously expressing MHC class II (HLA-DR), this study shows that HCMV decreases the expression of HLA-DR in infected cells by reducing the transcription of HLA-DR transcripts early during infection independently of the expression of previously implicated genes. This is an important finding, as it highlights a mechanism of immune evasion utilized by HCMV to decrease the expression of MHC class II in a relevant cell system that endogenously expresses the MHC class II complex.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Antígenos HLA-DR/genética , Células Progenitoras Mieloides/inmunología , Proteínas Nucleares/genética , Transactivadores/genética , Activación Transcripcional , Presentación de Antígeno , Linfocitos T CD4-Positivos/citología , Linfocitos T CD8-positivos/citología , Línea Celular , Citomegalovirus , Endocitosis , Fibroblastos/inmunología , Fibroblastos/virología , Regulación de la Expresión Génica , Humanos , Células Progenitoras Mieloides/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...